21 research outputs found

    Bounds on Dark Matter Interactions with Electroweak Gauge Bosons

    Full text link
    We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z0Z^0. We find that limits on the UV scale, Λ\Lambda, reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the WIMP dark matter paradigm. Our bounds suggest that light dark matter (m_{\chi}\lsim m_Z/2 or m_{\chi}\lsim 100-200\gev, depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the universe.Comment: 45 pages, 26 figure

    Higgs Properties in the Fourth Generation MSSM: Boosted Signals Over the 3G Plan

    Full text link
    The generalization of the MSSM to the case of four chiral fermion generations (4GMSSM) can lead to significant changes in the phenomenology of the otherwise familiar Higgs sector. In most of the 3GMSSM parameter space, the lighter CP-even hh is 115125\sim 115-125 GeV and mostly Standard Model-like while H,A,H±H,A,H^\pm are all relatively heavy. Furthermore, the ratio of Higgs vevs, tanβ\tan \beta, is relatively unconstrained. In contrast to this, in the 4GMSSM, heavy fourth generation fermion loops drive the masses of h,H,H±h,H,H^\pm to large values while the CP-odd boson, AA, can remain relatively light and tanβ\tan \beta is restricted to the range 1/2 \lsim \tan \beta \lsim 2 due to perturbativity requirements on Yukawa couplings. We explore this scenario in some detail, concentrating on the collider signatures of the light CP-odd Higgs at both the Tevatron and LHC. We find that while ggAgg \to A may lead to a potential signal in the τ+τ\tau^+\tau^- channel at the LHC, AA may first be observed in the γγ\gamma \gamma channel due to a highly loop-enhanced cross section that can be more than an order of magnitude greater than that of a SM Higgs for AA masses of 115120\sim 115-120 and tanβ<1\tan\beta<1. We find that the CP-even states h,Hh,H are highly mixed and can have atypical branching fractions. Precision electroweak constraints, particularly for the light AA parameter space region, are examined in detail.Comment: 20 pages, 7 figures; typos fixed, refs adde

    No Prejudice in Space

    Full text link
    We present a summary of recent results obtained from a scan of the 19-dimensional parameter space of the pMSSM and its implications for dark matter searches.Comment: 12 pgs, Presented at the Dark Matter Conference, 9-11 Feb 2009, Arcetri, Florence, Ital

    Constraints on the pMSSM from LAT Observations of Dwarf Spheroidal Galaxies

    Full text link
    We examine the ability for the Large Area Telescope (LAT) to constrain Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest Supersymmetric Particles (LSPs) for a set of ~71k experimentally valid supersymmetric models derived from the phenomenological-MSSM (pMSSM). We find that none of these models can be excluded at 95% confidence by the current analysis; nevertheless, many lie within the predicted reach of future LAT analyses. With two years of data, we find that the LAT is currently most sensitive to light LSPs (m_LSP < 50 GeV) annihilating into tau-pairs and heavier LSPs annihilating into b-bbar. Additionally, we find that future LAT analyses will be able to probe some LSPs that form a sub-dominant component of dark matter. We directly compare the LAT results to direct detection experiments and show the complementarity of these search methods.Comment: 24 pages, 9 figures, submitted to JCA

    Determining Ratios of WIMP-Nucleon Cross Sections from Direct Dark Matter Detection Data

    Full text link
    Weakly Interacting Massive Particles (WIMPs) are one of the leading candidates for Dark Matter. So far the usual procedure for constraining the WIMP-nucleon cross sections in direct Dark Matter detection experiments have been to fit the predicted event rate based on some model(s) of the Galactic halo and of WIMPs to experimental data. One has to assume whether the spin-independent (SI) or the spin-dependent (SD) WIMP-nucleus interaction dominates, and results of such data analyses are also expressed as functions of the as yet unknown WIMP mass. In this article, I introduce methods for extracting information on the WIMP-nucleon cross sections by considering a general combination of the SI and SD interactions. Neither prior knowledge about the local density and the velocity distribution of halo WIMPs nor about their mass is needed. Assuming that an exponential-like shape of the recoil spectrum is confirmed from experimental data, the required information are only the measured recoil energies (in low energy ranges) and the number of events in the first energy bin from two or more experiments.Comment: 33 pages, 20 eps figures; v2: typos fixed, references added and updated, revised version for publicatio

    Heart of Darkness: The Significance of the Zeptobarn Scale for Neutralino Direct Detection

    Full text link
    The direct detection of dark matter through its elastic scattering off nucleons is among the most promising methods for establishing the particle identity of dark matter. The current bound on the spin-independent scattering cross section is sigma^SI < 10 zb for dark matter masses m_chi ~ 100 GeV, with improved sensitivities expected soon. We examine the implications of this progress for neutralino dark matter. We work in a supersymmetric framework well-suited to dark matter studies that is simple and transparent, with models defined in terms of four weak-scale parameters. We first show that robust constraints on electric dipole moments motivate large sfermion masses mtilde > 1 TeV, effectively decoupling squarks and sleptons from neutralino dark matter phenomenology. In this case, we find characteristic cross sections in the narrow range 1 zb 70 GeV. As sfermion masses are lowered to near their experimental limit mtilde ~ 400 GeV, the upper and lower limits of this range are extended, but only by factors of around two, and the lower limit is not significantly altered by relaxing many particle physics assumptions, varying the strange quark content of the nucleon, including the effects of galactic small-scale structure, or assuming other components of dark matter. Experiments are therefore rapidly entering the heart of dark matter-favored supersymmetry parameter space. If no signal is seen, supersymmetric models must contain some level of fine-tuning, and we identify and analyze several possibilities. Barring large cancellations, however, in a large and generic class of models, if thermal relic neutralinos are a significant component of dark matter, experiments will discover them as they probe down to the zeptobarn scale.Comment: 35 pages, 11 figures; v2: references added, figures extended to 2 TeV neutralino masses, XENON100 results included, published versio

    Supersymmetry Without Prejudice at the LHC

    Full text link
    The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC (s=14\sqrt s=14 TeV, 1 fb1^{-1}) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of 71\sim 71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 7171k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all(two-thirds) of the pMSSM model points are discovered with a significance S>5S>5 in at least one of these 11 analyses assuming a 50\% systematic error on the SM background. If this systematic error can be reduced to only 20\% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.Comment: 69 pages, 40 figures, Discussion adde

    Direct Constraints on Minimal Supersymmetry from Fermi-LAT Observations of the Dwarf Galaxy Segue 1

    Full text link
    The dwarf galaxy Segue 1 is one of the most promising targets for the indirect detection of dark matter. Here we examine what constraints 9 months of Fermi-LAT gamma-ray observations of Segue 1 place upon the Constrained Minimal Supersymmetric Standard Model (CMSSM), with the lightest neutralino as the dark matter particle. We use nested sampling to explore the CMSSM parameter space, simultaneously fitting other relevant constraints from accelerator bounds, the relic density, electroweak precision observables, the anomalous magnetic moment of the muon and B-physics. We include spectral and spatial fits to the Fermi observations, a full treatment of the instrumental response and its related uncertainty, and detailed background models. We also perform an extrapolation to 5 years of observations, assuming no signal is observed from Segue 1 in that time. Results marginally disfavour models with low neutralino masses and high annihilation cross-sections. Virtually all of these models are however already disfavoured by existing experimental or relic density constraints.Comment: 22 pages, 5 figures; added extra scans with extreme halo parameters, expanded introduction and discussion in response to referee's comment

    Search for dark matter signals with Fermi-LAT observation of globular clusters NGC 6388 and M 15

    Full text link
    The globular clusters are probably good targets for dark matter (DM) searches in γ\gamma-rays due to the possible adiabatic contraction of DM by baryons. In this work we analyse the three-year data collected by {\it Fermi} Large Area Telescope of globular clusters NGC 6388 and M 15 to search for possible DM signals. For NGC 6388 the detection of γ\gamma-ray emission was reported by {\it Fermi} collaboration, which is consistent with the emission of a population of millisecond pulsars. The spectral shape of NGC 6388 is also shown to be consistent with a DM contribution if assuming the annihilation final state is bbˉb\bar{b}. No significant γ\gamma-ray emission from M 15 is observed. We give the upper limits of DM contribution to γ\gamma-ray emission in both NGC 6388 and M 15, for annihilation final states bbˉb\bar{b}, W+WW^+W^-, μ+μ\mu^+\mu^-, τ+τ\tau^+\tau^- and monochromatic line. The constraints are stronger than that derived from observation of dwarf galaxies by {\it Fermi}.Comment: 17 pages, 6 figures, accepted by JCA

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter
    corecore